
Chrome OS
Firmware Summit
Sundries
bhthompson & dparker

Feb 20th, 2014



The Beginning of the End

● CPFE

● Git

● Sausage?

● FAFT

● Repo & Gerrit

● Portage

● Firmware Branches

● Keys & Signing

● Code Reviews



Disclaimer….

This presentation is not a quick-start guide.

See http://www.chromium.org/chromium-os/quick-start-guide for that.

Your Google contact will also help you get started with getting access 
to private code and sites.

http://www.chromium.org/chromium-os/quick-start-guide


Repo & Gerrit



Repo

● Repo is a tool developed for Android for repository management 
that has also been adopted for Chromium OS.

● Repo lets you download and make changes to the ~156 GIT 
repositories that make up Chromium OS.

● Repo commands take the form of repo COMMAND [ARGS].
● The most common commands used with Chrome OS are:

○ repo init -- generate new repository files
○ repo sync -- bring your sources up to date
○ repo start -- start a local branch for development
○ repo upload -- upload changes for code review
○ repo help -- display help information

● Additional documentation on repo can be found at http://source.
android.com/source/using-repo.html

http://source.android.com/source/using-repo.html
http://source.android.com/source/using-repo.html
http://source.android.com/source/using-repo.html


Gerrit

● Gerrit is the code review system used by Chromium OS.
● Gerrit uses a web interface available at https://chromium-review.

googlesource.com (crosreview.com)
● Submissions to Gerrit are made from within the Chromium OS 

development environment using the repo upload command.
● Anyone may create an account and upload changes but only 

chromium.org members may approve them.
● Changes and review comments are public. Please be careful about 

mentioning OEM names of unannounced devices.

https://chromium-review.googlesource.com
https://chromium-review.googlesource.com
http://crosreview.com
https://chromium-review.googlesource.com
http://dev.chromium.org/chromium-os/developer-guide/gerrit-guide


Gerrit-int

● An instance of Gerrit for making changes to board-specific private 
repositories.
https://chrome-internal-review.googlesource.com (crosreview.
com/i)

● Each board has a private repository (overlay) containing the files 
needed to build firmware. The system image.bin contains some 
private blobs (at least the x86 ones do).

● Anyone may register an account but you must be white-listed to 
see project-specific repositories. ‘Read’ access also controls which 
private repositories you can ‘repo sync’.

(Screenshot redacted)

https://chrome-internal-review.googlesource.com
http://crosreview.com/i
http://crosreview.com/i
http://crosreview.com/i
http://dev.chromium.org/chromium-os/developer-guide/gerrit-guide


Portage



Portage

● Portage is a package management system, used in 
Gentoo Linux and Chromium OS

● Portage is designed to primarily work with source 
directly as opposed to a binary repository

● Portage is made up of:
○ A portage tree of ebuilds
○ Tools to use it, primarily emerge



Ebuilds

● Ebuilds are files that contain Bash script code to 
acquire, build and install a particular package. 

● The Portage Tree consists of a set of ebuild files 
defining the various packages in the tree.

● The ebuild file names map directly to the package 
names you can pass into the emerge command.

● A virtual is essentially an ebuild pointer. It allows you to 
depend on something generic (like kernel) which maps 
to something specific (like kernel-vendor)

Download sources Build sources Install bits



Eclasses

● An eclass is roughly the equivalent of a library or header file for an 
ebuild.

● Eclasses are written in Bash just like ebuilds and can be included in 
ebuilds to share common code. 

● One example of an eclass specific to Chrome OS is cros_workon. 

#arbitrary eclass comment
ECLASS_VALUE="1"
eclass_func1() {...}
eclass_func2() {...}
...

#some ebuild comment
inherit arbitrary
eclass_func1
...

arbitrary.eclass some.ebuild



Emerge

● Emerge is the most common user interface to Portage.
● Similar to other package managers (for example, apt-get in Ubuntu) 

in the most general use it will bring in a package for you:
○ emerge vim

■ Bring vim into your filesystem
● In the Chromium OS development environment you can bring in 

packages for your target:
○ emerge-arm-generic vim

■ Bring vim into your target filesystem
● A common option for emerge is --unmerge which will remove a 

package from your filesystem.
● Emerge can be used to bring in specific packages or to work with a 

specific package as opposed to building all packages. 



Equery

● Equery can be used to collect a variety of information 
from Portage. Some common commands are:
○ equery belongs <file> tells you what package a file 

comes from. 
○ equery which <package> tells you which ebuild is 

used for a package. 
○ equery depends <package> tells you what 

packages are dependent on a package.
○ equery files <package> tells you what files belong 

to a particular package.
○ equery uses <package> tells you what USE flags 

are enabled for a package. 



Overlays

● An overlay is essentially a partial Portage Tree that goes over 
another Portage Tree.

● This allows a customized set of ebuilds to be used.

● With Chrome OS, a board will have an overlay for its own custom 
ebuilds, Portage files, and configurations.



Overlays

src/third_party/portage-stable

src/third_party/chromiumos-overlay

src/private-overlays/chromeos-overlay

src/private-overlays/chromeos-partner-
overlay

src/overlays/overlay-$BOARD

src/private-overlays/
overlay-$BOARD-private

Generic GNU/Linux packages

Chromium OS packages and patches on top of 
generic packages.

Packages for licensed codecs and fonts and 
“Chrome” branding. Not public and not shared 
with partners.

Private packages shared with all partners. 
Includes some “binary only” packages like sys-
boot/chromeos-mrc

Public board-specific configuration and 
packages.

Private board-specific packages. Shared with the 
project’s partners. Includes some firmware 
packages.

Generic

Specific



What is cros_workon?

● cros_workon is a bash script that is used to select which portage packages 
you intend to work on.

● The cros_workon start command will:
○ Use the -9999 ebuild for a package. 
○ Build from local sources.

● The cros_workon stop command will:
○ Revert to the latest stable ebuild.
○ Use prebuilt binaries when possible. 

● There are also cros_workon info, list and list-all commands which are useful. 

● In summary, for cros_workon packages you should use the start command 
before trying to modify sources, otherwise your changes will not necessarily go 
into effect.



What is a cros_workon package?

● If an ebuild inherits cros_workon it is a cros_workon package.

● If you need to modify a cros_workon ebuild you must modify the 
-9999 version of the ebuild. 
○ When the change is submitted the builders will automatically up-rev 

the current stable ebuild and replace it with the contents of the -9999 
ebuild. 



What about non cros_workon packages?

● If an ebuild does not inherit cros_workon than it is not a 
cros_workon package. 

● In this case you do not need to (and cannot) use the cros_workon 
command with the package. 

● If you need to change an ebuild for a non cros_workon package 
than when submitting the change you will need to manually up-rev 
the ebuild.
○ For example: git mv arbitrary-0.0.1-r3 arbitrary-0.0.1-r4

Why must we up-rev?



Pre-builts

● Builders generated binary versions of packages.

● By default, if your development machine can download a pre-built 
for the correct architecture and USE flag (build options) 
combination it will do so.

● If a pre-built isn’t available, it will fall back to build from source….
which might also involve downloading the source code. For some 
packages, like chromeos-mrc the source isn’t avaialble.

● “cros worked on” (9999) packages are always built locally.

● Access tokens for private pre-builts are kept in the 
googlestorage_acl.boto file in the board’s private overlay.

● The locations of the pre-builts is kept in chromeos-partner-
overlay/chromeos/binhost/target



Firmware Branches



Chrome OS Branching

Top of Tree (ToT)

R3
3

R3
4

R3
5

6 Weeks 6 Weeks



Chrome OS Firmware Branching

Top of Tree (ToT)

Fi
rm

wa
re

-R
am

bi
-5

21
6.

B

Firmware-BOARD2-5216.120.B

Firmware-BOARD.5216.100.B



The Life of a Firmware Image

Fir
mwar

e-
BOARD2-

52
16

.12
0.B

Firmware Branch Builder

Firmware Test Team

Binary Component Server 
(BCS)

To
p o

f T
ree

 (T
oT

)

chromeos-firmware-BOARD
ebuild

Canary Builder

CPFE Auto 
Updates

Chrome OS Signer



On the Firmware Branch Side...

Fir
mwar

e-
BOARD2-

52
16

.12
0.B

Firmware Branch Builder

Firmware Test Team

Binary Component Server 
(BCS)

This basically does `emerge-BOARD chromeos-
firmware` on the branch which results in a 
firmware_from_source.tar.bz2 being generated

The test team will take the image.bin and ec.bin 
from the firmware_from_source.tar.bz2 and run 
through a series of tests, including FAFT.

Assuming the firmware passes testing, the image.
bin and ec.bin are uploaded to BCS, effectively 
archiving them for use elsewhere.



On the ToT Side...
To

p o
f T

ree
 (T

oT
)

chromeos-firmware-BOARD
ebuild

Canary Builder

CPFE Auto 
Updates

Chrome OS Signer

The firmware image that was uploaded to 
BCS is referenced here, resulting in a 
chromeos-firmwareupdate script with it 
embedded in the OS image.

The canary builder makes new OS images 
every few hours.

The signer takes the output from the canary 
builder and makes signed recovery images. 
This includes signing the firmware in the 
chromeos-firmwareupdate script

R3x

AUs will now include the signed chromeos-
firmwareupdate script, so systems will receive 
the new firmware. For production systems this 
only updates the RW portion.Builds will also show up on CPFE 

for recovery or testing.

Release branches 
follow the same 
process.



Keys & signing



Google Confidential and Proprietary

What kind of signing keys are there?

● Dev - these are the developer keys checked into the public source 
code. They are used by any locally built image or very early units 
such as EVT. Boot a base image in recovery? No problem!

● PreMP - these are the pre mass production keys which are typically 
used in the earlier factory runs before mass production. These are 
required to enable automatic updates, and should be in place by 
DVT.

● MP - these are the mass production keys, these are expected to be 
the keys you would find on a device you actually buy as a end user. 
MP keys are generated in a secret underground bunker by security 
elves.

These keys are all of the same format, just different values. 



How do I get a system to automatically update?

The main step is to recover the device with a Google signed recovery 
image which you can get from CPFE.

You may also need to set a valid HWID, you can set a HWID using 
some commands on the DUT like:

cd /tmp
flashrom -p host -r image.bin
gbb_utility --set --hwid=”DEVICE ABC-123” image.bin
flashrom -p host -w image.bin
reboot

Note: This requires AUs to be enabled for the platform in question.

https://www.google.com/chromeos/partner/fe/#release


Code Reviews

“Cleanest code I’ve ever 
seen!” - Angela “Super fast review, 

Would submit again! 

A++” - S
hiva



Review Process

`repo upload .`

Take feedback,

Make fixes

`repo upload .`

Provide Feedback

+2 Approved

Author Reviewer

+1 Verified

+1 Ready

CQ 
Time



Guidelines for a Speedy Review

● Keep your patches small and on a single topic.

● Separate board-specific patches from global changes.

● Reference bugs so reviewers have more context.

● Add a reviewer! If you’re unsure, use “git blame <filename>” and 
“git log --oneline -- <filename>” to see who has been modifying the 
same or similar files.



CPFE - Chrome Partner Front End

https://www.google.com/chromeos/partner/fe/

Download ALL the things!
(and upload some things)

https://www.google.com/chromeos/partner/fe/
https://www.google.com/chromeos/partner/fe/


CPFE - Download Builder Artifacts

Build number of the firmware branch for BayTrail



CPFE contains a variety of firmware...

● Untested firmware:
○ Set Device to the device in question.
○ Set Image Type to FIRMWARE_IMAGE_ARCHIVE.
○ Set Version/Prefix to your firmware branch number (5xxx), and search.

● Tested and dev signed firmware:
○ Set Device to device in question and search.
○ Download the latest TEST_IMAGE_ARCHIVE.
○ Image a USB stick with this, then boot it on a DUT and run 

`chromeos-firmwareupdate --mode=incompatible_update`.
● Tested and Google signed firmware:

○ Set Device to device in question and search.
○ Download the latest recovery image.
○ Image a USB stick with this, then boot it on a DUT.

■ If your firmware has matching keys, than recovery (esc+refresh+power) 
will work, if not than you will need to CTRL+U boot it in dev mode.

○ If you just let your system AU, you will get this automatically.



CPFE Uploads 

New files for the 
Binary Component 
Server (BCS) can 
be uploaded 
through CPFE. 



Git



Git Basics

Git is an open source version control system created to 
wrangle the Linux Kernel

Create lots of local branches with “git checkout -b foo” or 
“repo start foo .” Don’t be afraid!

Learn git in your browser (which is Chrome, right?): http:
//try.github.io/

Pro Git book (Creative Commons): http://git-scm.com/book/

http://try.github.io/
http://try.github.io/
http://try.github.io/
http://git-scm.com/book/


An Example: Making a change to the EC code
1. cros_sdk
2. cd ~/trunk/src/platform/ec
3. repo sync .
4. repo start mychange .
5. vim board/rambi/board.c
6. make buildall -j
7. cros_workon-rambi start chromeos-ec
8. emerge-rambi chromeos-ec
9. util/flash_ec --board=rambi

10. git add board/rambi/board.c
11. git commit
12. repo upload .
13. ...time passes…got a -1 on the review. So sad :(    (Need to fix a type-o)
14. vim board/rambi/board.c
15. git add board/rambi/board.c
16. git commit --amend
17. repo upload .
18. repo abandon mychange .
19. cros_workon-rambi stop chromeos-ec



Amending an earlier local commit

If you need to edit a change that has locally committed changes after it, you 
can go back and edit the change with interactive rebasing.

1. git log --oneline. Find the commit hash of the change you want to edit. Let's 
say it's a717a50.
2. git rebase -i a717a50^
3. In the text editor window, change "pick" to "edit" for the change you want to 
modify. Save the file.
4. Make changes.
5. Test changes.
6. "git add" the changed files.
7. git commit --amend
8. git rebase --continue
9. repo upload .



Diffing Branches & Cherry Picking

git --no-pager log --left-right --graph --cherry-pick --oneline \
cros/master...HEAD

> a717a50 Enable USB power in S3 if USB ports enabled at suspend
> 55c3e8e Added unit tests for lid angle calculation and acos
> 419e6d9 Squawks: Add smart battery temp sensor to temp sensors list
> 3ee48b7 Clapper: Update accelerometer translation matrices
...
< d778fab Fix some stupid.
< 33e967e Update util/lbplay.c to use the sysfs interface.
< e43074e cleanup: nyan: remove unnecessary dependence to pmu_tpschrome.h
< e7e0cf2 Optimize memmove

git cherry-pick d778fab
git commit --amend (change “Change-Id” to “Original-Change-Id”)
repo upload . 



How the Sausage is Made

homefoodsafety.org

http://homefoodsafety.org/refrigerate/sausage
http://homefoodsafety.org/refrigerate/sausage


How the Sausage is Made

Firmware builders build virtual/chromeos-firmware whenever a 
changed is checked in to a firmware branch.

This virtual points to a board-specific package like chromeos-
base/chromeos-firmware-rambi

This ebuild ultimately generates the chromeos-firmwareupdate “shell 
ball” containing the system (bios.bin) and EC (ec.bin) firmware along 
with supporting utilities (flashrom, mosys, vpd, dump_fmap). The 
firmware updater is assembled by src/platform/firmware/ 
pack_firmware.sh

The firmware builders also gather some of the artifacts deposited under 
/build/$BOARD/firmware/, creates firmware_from_source.tar.bz2, and 
uploads it to the CPFE.



How the Sausage is Made

So how does the “bios.bin” get created so it can be assembled to go 
into the updater?

chromeos-firmware-rambi inherits from the cros-firmware.eclass in 
the chromiumos-overlay “eclass” directory.

USE flags steer the build process followed by the cros-firmware eclass 
to build the right blobs to package into image.bin (aka bios.bin) using 
src/platform/dev/host/cros_bundle_firmware

From: src/overlays/overlay-rambi/make.conf
USE="${USE} cros_ec”

From: src/private-overlays/overlay-rambi-private/make.conf
USE="${USE} bootimage coreboot depthcharge unified_depthcharge"



How the Sausage is Made

bootimage
Add a dependency on sys-boot/chromeos-bootimage 
which generates /firmware/image.bin from source.

coreboot
Depends on virtual/chromeos-coreboot which points to
sys-boot/chromeos-coreboot-rambi which generates 
/firmware/coreboot.rom

depthcharge
Depend on sys-boot/depthcharge

cros_ec
Build chromeos-base/chromeos-ec resulting in /firmware/ec.bin



How the Sausage is Made

Looking more at virtual/chromeos-coreboot ...

This is satisfied by sys-boot/chromeos-coreboot-rambi which 
depends on chromeos-base/vboot_reference (verified boot).

chromeos-coreboot-rambi lives in the board’s private overlay. It’s “files” 
subdirectory contains:

descriptor.bin  fitc.xml  me.bin  vgabios.bin  vlv_1004.ssf

chromeos-coreboot-rambi inherits from the cros-coreboot eclass which 
pulls in sys-boot/chromeos-mrc and sys-apps/coreboot-utils

The chromeos-mrc ebuild is in the chromeos-partner-overlay. The 
source code isn’t available to partners but the binary blob can be 
downloaded with: emerge-$BOARD --getbinpkg chromeos-mrc



In summary…

 * dependency graph for virtual/chromeos-firmware-3
 ...
 `--  virtual/chromeos-firmware-3
   `--  chromeos-base/chromeos-firmware-rambi-0.0.1-r1
    `--  chromeos-base/vboot_reference-1.0-r913
     `--  app-crypt/trousers-0.3.3-r35
     `--  dev-libs/libyaml-0.1.4
    `--  chromeos-base/vpd-0.0.1-r65
     `--  sys-apps/flashrom-0.9.4-r311
      `--  sys-apps/pciutils-3.1.10
      `--  sys-apps/dtc-1.4.0
      `--  dev-embedded/libftdi-1.0-r3
      `--  sys-apps/dmidecode-2.11-r1
     `--  dev-util/shflags-1.0.3-r1
     `--  virtual/chromeos-activate-date-1
      `--  chromeos-base/chromeos-activate-date-0.0.1-r1
    `--  sys-apps/mosys-1.2.03-r189
     `--  sys-apps/flashmap-0.3-r15
    `--  sys-boot/chromeos-bootimage-0.0.2-r84
     `--  virtual/chromeos-coreboot-3
      `--  sys-boot/chromeos-coreboot-rambi-0.0.1-r223
     `--  sys-apps/coreboot-utils-0.0.1-r988
     `--  sys-boot/chromeos-seabios-0.0.1-r51
     `--  virtual/u-boot-1
      `--  sys-boot/chromeos-u-boot-2013.04-r1644
     `--  chromeos-base/chromeos-ec-9999
     `--  sys-boot/chromeos-bmpblk-0.0.3-r2
     `--  sys-boot/chromeos-memtest-0.0.1-r5
     `--  sys-boot/depthcharge-0.0.1-r662
      `--  sys-boot/libpayload-0.0.1-r1000

I’m building a
local “cros_workon” 

EC firmware

It’s complicated :-)

Start with a graph then use 
“equery w” and “equery f” to find 
ebuilds and see what files they 
install.

Increase the graph depth until 
you’ve had enough.

$ equery-rambi g --depth=4 chromeos-firmware



So why do I care?

Because you’ll forget to either “cros_workon” something or emerge 
something and you’ll end up testing firmware you didn’t intend to build.

Working on coreboot and want a new image.bin?
cros_workon-$BOARD start chromeos-coreboot-$BOARD
emerge-$BOARD chromeos-coreboot-$BOARD chromeos-bootimage

Changed something in src/platform/vboot_reference with headers that 
are linked from all over the place?
cros_workon-$BOARD start vboot_reference \

chromeos-coreboot-$BOARD depthcharge
emerge-$BOARD vboot_reference chromeos-coreboot-$BOARD \
      depthcharge chromeos-bootimage



How the sausage is made on a release branch

Starts off the same way with virtual/chromeos-firmware which points 
to chromeos-firmware-rambi

However, chromeos-firmware-rambi on the release branch includes:

CROS_FIRMWARE_MAIN_IMAGE="bcs://Rambi.5216.50.0.tbz2"

CROS_FIRMWARE_EC_IMAGE="bcs://Rambi_EC.5216.50.0.tbz2"

Instead of building image.bin and ec.bin, the pre-built images are 
fetched from the Binary Component Server and are used to build the 
chromeos-firmwareupdate “shell ball.”



FAFT (Fully Automated Firmware Test)

FAFT is a framework to write autotests that test firmware. It consists of two 
components:

● A library of helper functions to perform firmware related tasks
● A defined structure/template for autotests

It is used in conjunction with the servo debug board connected to devices under 
test.

Running FAFT tests involve:
● Starting servod server, which provides control over the servo debug board

○ sudo servod --board=<BOARD>
● Running tests via the test_that script

○ test_that --board=<BOARD> <DUT IP> suite:faft_bios
○ test_that --board=<BOARD> <DUT IP> suite:faft_ec



All Done!



Google Confidential and Proprietary

BACKUP
We are probably done...



Useful portage equery commands

Show the ebuild for the package
equery-$BOARD w <package-name> 

Show files installed by package
equery-$BOARD f <package-name> 

Show the package to which a file belongs
equery-$BOARD b <filename without /build/$BOARD>

Show the dependency graph for a package
equery-rambi g <package-name>



Moblab

● Moblab is an autotest server running on Chromebox.
●
● The moblab official image release will be managed and AUed by Google.
●
● The partners also can build their own moblab image from public overlay(overlay-variant-stumpy-moblab).
● The initial launch image will support Samsung Chromebox(Stumpy) only as a moblab host server, but we plan to add more 

Chromeboxes gradually.
●
● The initial launch will support only limited test set since it is more focusing on the moblab, but we plan to add FAFT for firmware 

testing in the later releases.



Depot Tools

● The Depot Tools are a set of scripts used to manage 
interaction with the source repositories. 

● Depot Tools can be installed using git via http://www.
chromium.org/developers/how-tos/install-depot-tools

● The tool used most often with Chrome OS development 
is repo.

● Make sure you add it to your $PATH.

http://www.chromium.org/developers/how-tos/install-depot-tools
http://www.chromium.org/developers/how-tos/install-depot-tools
http://www.chromium.org/developers/how-tos/install-depot-tools


Chroot

● chroot is a Linux command which changes the apparent root directory (/) 
for the current process and children.
○ chroot is short for change root. 

● In Chrome OS parlance 'the chroot' is the development environment one 
enters with the cros_sdk command which ultimately leads to a chroot call. 
○ Effectively it is a folder which contains the various tools and sources 

needed to build Chrome OS.
○ The chroot is used to make the development environment somewhat 

system agnostic and to protect the host.



Chroot

Host Filesystem

Root (/) is mapped to the base 
of a device's filesystem. 

cros_sdk
(leads to a chroot call)

Host Filesystem

No longer visible to the current 
process and children, except 
for what is within the chroot.

Chroot

Root (/) is now mapped 
to a folder within the 
host's filesystem

Chroot



Additional Resources

● Chromium OS Developer's Guide -- http://www.chromium.
org/chromium-os/developer-guide
○ This is the quintessential guide to getting started with Chrome OS 

development.

● Gentoo Portage Documentation -- http://www.gentoo.
org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
○ Much of what is described in the Gentoo documentation can be helpful 

in understanding the way Portage works even with Chrome OS. 

http://www.chromium.org/chromium-os/developer-guide
http://www.chromium.org/chromium-os/developer-guide
http://www.chromium.org/chromium-os/developer-guide
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1


Gerrit Searching

● Clicking on a name or category will run a search.
● Searching for a user's email address will find their CLs.
● Searching for project:project/name will find CLs for that particular project. 
● By default you will see status:open which searches for open items (not yet 

merged or abandoned).
○ status:merged returns merged CLs.
○ status:abandoned returns abandoned CLs.

● Searching for a commit ID will return the CL it is from. 
● Some additional search parameters can be found at https://review.typo3.

org/Documentation/user-search.html

https://review.typo3.org/Documentation/user-search.html
https://review.typo3.org/Documentation/user-search.html
https://review.typo3.org/Documentation/user-search.html


What is in a Chrome OS Overlay?

● A Chrome OS board has a primary overlay that at a 
minimum contains:
○ profiles/repo_name -- Unique name
○ make.conf -- Defines build info
○ toolchain.conf -- Defines the toolchain

● Typically there is also metadata/layout.conf
○ Defines the masters list for 

repositories which allows for disambiguation
● There can also be custom ebuilds. 

bhthompson@ragnarok:
~/chromiumos/src/overlays/overlay-
arm-generic$ tree
.
|-- autotest-blacklist
|-- make.conf
|-- prebuilt.conf
|-- profiles
|   |-- kernel-next
|   |   |-- package.use
|   |   |-- parent
|   |   `-- virtuals
|   `-- repo_name
`-- toolchain.conf



$ willis

Willis tells you “what’s up” in your chroot.

Shows you all the local branches and untracked files
across all the repositories.



Which overlay is used?

● There are multiple potential overlay locations, depending on if the 
overlay contents are public, private, and/or a variant of a base 
board.

● The locations in order of inclusion are:
○ src/overlays/overlay-<board>
○ src/overlays/overlay-variant-<board>-<variant>
○ src/private-overlays/overlay-<board>-private
○ src/private-overlays/overlay-variant-<board>-<variant>-private


