
Case-Closed Debug in Chromebooks
and Servo Micro
The Servo debug/test-automation connector has been required on all
chromebooks. It has proved essential to performing the required testing to meet
the six week OS release cycle, for bringing up new systems and qualifying new
components. In newer form-factors it is becoming hard to �t the Servo connector
(and related �ex) and in some designs the thermal solution stops working when
the connector is used. The secure Case-Closed Debugging solution provides the
same capabilities and can take advantage of the Debug Mode detection available
on the USB-C connector. This application note gives an overview of Case-Closed
Debug (CCD) but does not address the related security issues.

Introduction to Case-Closed Debug

Case-Closed Debug provides the same set of features as are available on the
Servo connector:

Access to console UART connections to AP, EC and on some systems a third
MCU
Ability to reprogram �rmware/BIOS SPI �ash used by the AP
Ability to reprogram SPI �ash used by the EC or use a �rmware update
mode to reprogram the internal �ash on the EC (using UART or I2C)
GPIOs for holding the EC (and thus entire system) or AP in reset
Act as master on a debug I2C that is primarily used for power
measurements. This bus normally contains INA voltage/current monitors
and temperature monitors that will not be populated on �nal MP systems.
JTAG/SWD could be provided but has not been implemented on any
existing system.

When the Servo connector is used these interfaces are presented on well de�ned
pins of the board-to-board connector and a �ex is used to attach to the external
Servo controller. The height needed for the mated board-to-board connector is
not available in newer slim designs, and the disruption caused by the �ex may
interfere with thermal solutions. In a system using Case-Closed Debug the
interfaces are gathered by a part on the board into a single USB interface that
can come out of the system on an existing connector. In particular, the USB-C
connector has two SideBand Use pins (SBU1, SBU2) that can be used for the
debug USB while the main link on the connector continues to be available. (The
SBU pins are also used by some Alternate Modes, so the connector cannot be
used for video out at the same time as debugging.)

Servo Micro: Using CCD with existing boards

The Servo Micro implements the CCD functions in a way that can connect to
existing boards and thus can also serve as an easy introduction to the CCD
implementation. The debug USB interface is expanded by a STM32F072 into an
existing Servo �ex connector that can be plugged into the target board.

The Servo Micro includes the voltage level bu�ering between the microcontroller
and the device under test (DUT), making use of the DUT supplied reference
voltages. To allow use with all the existing designs a third UART (not on the
original Servo connector, but on some designs) can be connected to either the
JTAG pins or the SPI pins. It is capable of providing the SPI �ash supply voltages.

The schematics for Servo Micro are available as a pdf.

Servo Micro has a USB micro-B connector and acts as a USB device.

Schematic sheet 2 shows the STM32 powered from the uB connector. The UART3
pins can also be used as GPIO pins when driving the JTAG interface. As a useful
but non-compliant hack if the ID pin on the uB is low then Q4 will force the
STM32 to boot in programming mode. This allows initial programming of the part
with USB DFU using an illegal USB-A plug to USB-A plug cable and a USB-A
receptacle to uB plug adapter. Alternatively the initial programming can be done
using a UART connection on CN2.

https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/board/servo_micro/servo_micro_sch_20180404.pdf

Schematic sheet 3 shows the I2C GPIO expander and the bu�ers for JTAG/SWD.
The bu�ers adapt to the voltage needed on the DUT that is provided on
PPDUT_JTAG_VREF . In the SWD case the TDI becomes the bidirectional SWDIO

but the STM32 continues to use a discrete input and output pin. The DUT signal
is received through U55 and a selection made with U1 to determine if to forward
TDO from the DUT or the TDI/SWDIO. Because of the shared pins on the STM32
the JTAG interface can alternatively be used to connect UART3 to the DUT for a
few chromebook models.

Schematic sheet 4 shows the bu�ers for the SPI interfaces. Again the
PPDUT_SPIn_VREF sets the voltage level required from the DUT. However, I61

and I62 (which are expanded on sheets 7 and 8) allow the Servo Micro to supply
3.3V or 1.8V for cases where the DUT does not provide the reference (care is
needed to select the correct voltage for the given DUT). Only one of the SPI
interfaces can be used at any time, so the bu�ers are also used to select which
connects to the STM32 SPI pins. Certain chromebook models connect the UART3
in place of SPI1 which is enabled using U5 to select between the STM32 UART3
(TX,RX) and SPI (CLK, MISO).

Schematic sheet 5 shows the bu�ers for the UART interfaces. The
PPDUT_UARTn_VREF sets the voltage level required from the DUT.

Schematic sheet 6 shows the board-to-board connector that mates with the
servo connector on the DUT.

Schematic sheets 7 and 8 are the expansion of blocks I61 and I62 on sheet 4. The
load switches are carefully selected to have reverse blocking (protecting against a
DUT providing a voltage or both being enabled).

The code for the STM32 in Servo Micro is open source as the servo_micro
board in the Chromium EC codebase. Essentially it is a USB device that provides
the standard control endpoint and 7 function endpoints de�ned in board.h .

 #define USB_EP_USART4_STREAM 1
 #define USB_EP_UPDATE 2
 #define USB_EP_SPI 3
 #define USB_EP_CONSOLE 4
 #define USB_EP_I2C 5

https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/board/servo_micro
https://chromium.googlesource.com/chromiumos/platform/ec/
https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/board/servo_micro/board.h

 #define USB_EP_USART3_STREAM 6
 #define USB_EP_USART2_STREAM 7

The USART endpoints use the simple GOOGLE_SERIAL vendor class to connect
the STM32 UARTs. The CONSOLE endpoint also uses GOOGLE_STREAM to
connect to the console of the code running on the STM32. GOOGLE_STREAM
provides simple byte streams on the IN and OUT of the endpoint and host
support is included in the standard Linux drivers/usb/serial/usb-serial-
simple.c

The SPI endpoint is described in chip/stm32/usb_spi.h and provides a
simple connection to the SPI port. The host support is provided as a driver in
�ashrom.

The I2C endpoint is described in include/usb_i2c.h and provides a simple
connection to the I2C bus. The host support is provided in the hdctools servo
support.

The GPIO endpoint is cryptically described in chip/stm32/usb_gpio.h and
provides simple access to set/clear and read the GPIO pins. The host support is
provided in the hdctools servo support.

The UPDATE endpoint is not part of CCD. It provides a method for updating the
STM32 without needing the special boot modes. This uses the Chromium EC
update over USB method. The STM32 runs the code in common/usb_update.c .
The host side code is in extra/usb_updater/usb_updater2.c and the
extra/usb_updater directory contains additional scripts.

Using CCD on new designs

New chromebook designs implement the CCD in a similar way to Servo Micro.
There are two changes to the Servo Micro:

The USB microB connector is replaced with the USB connection being
carried on the SBU pins of one of the devices USB-C ports. This will only be
activated when the USB-C port detects a debug accessory or a debug
alternate mode is entered. Use of the debug connection precludes use of

https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/chip/stm32/usb_spi.h
https://chromium.googlesource.com/chromiumos/third_party/flashrom/+/master/raiden_debug_spi.c
https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/include/usb_i2c.h
https://chromium.googlesource.com/chromiumos/third_party/hdctools/+/master/servo/stm32i2c.py
https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/chip/stm32/usb_gpio.h
https://chromium.googlesource.com/chromiumos/third_party/hdctools/+/master/servo/stm32gpio.py
https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/docs/usb_updater.md
https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/common/usb_update.c
https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/extra/usb_updater/usb_updater2.c
https://chromium.git.corp.google.com/chromiumos/platform/ec/+/d219d5cef0f429ff01753159b11355d02fe194f9/extra/usb_updater

the Display Port alternate mode (which also uses the SBU pins) but allows
full USB3 and USB2 functions including both host and gadget mode.
The system security chip will normally lock out debug access. Using secure
transactions, user authorization and proof of user physical presence it can
unlock various degrees of debug access.

The full details are part of the Cr50 �rmware speci�cation.

Powered by Gitiles| Privacy

https://gerrit.googlesource.com/gitiles/
https://policies.google.com/privacy

