/\ CCeSssS| t] ’ 1 y

Accessibility in the Cloud

Boldy venture forth, ye brave explorers!

Jonas Klink (klink@google.com)
Accessibility Product Manager / Software Engineer

U K http://google.com/Accessibility

SRR



Who am I?

o PM/SWE, part of a Dev team dedicated to
Access Engineering

o With Google for the past 4 years

of =o[Vle=1il0]p

m MS in Computer Science (Chalmers Uni. of Tech., Sweden)
m PhD in Computer Science (University of Washington, Seattle)

o Research on Education and Technology for the
visually impaired
o Project work includes:

m Client-side: Toolbar, Desktop Search, Chrome
m Web Apps: Gmail, Apps, Blogger, Maps, Transit, ...

http://google.com/Accessibility el @ G@?



Why? Users!
Internet Population

English
Chinese
Color deficient
Japanese
Spanish

Poor vision
Poor dexterity
German
French
Korean

Deaf

Italian
Portuguese
Russian
Arabic

Dutch
Swedish
Blind

0 75 150 225 300
Millions of users

R http://google.com/Accessibility G‘@@ @@a@



The Web as a Platform

http://google.com/Accessibility G@@ @@7 %



http://google.com/Accessibility =u; @ s %7



The Web as a Platform

o Platform layers are changing

1. Low-level support framework (TTS, fonts, themes)
2. JavaScript APls
3. Web Applications (GWS, Gmail, Docs)

o Graceful Degradation vs. Progressive Enhancement
o The Web has the distributed data

m Universal Access Engineering makes it available through any channel

o Personalization and user goals are key

m Every level in the stack is customizable
m APls provides the muscle
m User is less dependent on the applications

.33 :. o E http://google.com/Accessibility C?@ G@?



Designing for Access Workflows

o Focus on workflows, rather than Ul components
m Most common tasks need to be optimized
m Tab/arrow navigation often too slow
m Enumerating workflows often highlight common roadblocks
m Workflows drill down to component-level access

o Designing your product for optimized workflows
1. Optimize workflows with keyboard and AT support
2. Expose a public page-level API, addressable from JS
3. Provide a clean DOM, with non-obfuscated hooks

o Document and empower the curious user!

.:: X :. o E ’, http://google.com/Accessibility C}?@@ C}D%%



Supporting the brave explorers

o Exploration in the document model Web
m Web 1.0: Headings, links, frames to build cognitive model
m AT optimized for quick access to key element types
m Users have developed personalized techniques for
exploration

o Need support for exploration in Web 2.0
m \Web 2.0: application mode and non-document structure
m Sighted users rely on visual cues learned from the desktop
m Answer: contextual, on-demand exploration aids?
m Community can work together to build familiarity

.:: ' :. o E ‘e http://google.com/Accessibility @@@ @D%@



Example: Google Reader Access
o Extremely keyboard friendly

m Access keyboard shortcut through '?' or Reader Help Center
m Navigate items with 'j' and 'k’
m Keyboard bindings available for starring, sharing, commenting, etc

o Delivers screen reader augmentation

m Follow link 'click here for ARIA enhanced Google Reader
m Screen reader support in ARIA-enabled browsers

o Applies magnification lens for low-vision users

m Follows keyboard navigation
m Provides customization through '-' and '='

o Zero impact on latency!

.33 :. o E http://google.com/Accessibility C?@ G@?



Conclusion

Collaboration and openness benefit everyone

Customization is key
Configure once, work everywhere

Focus on workflows, then widgets

Develop solutions with little or no latency impact

http://google.com/Accessibility G @ @:%7 ‘



Thank you!
?

Q&A

google.com/accessibility
klink@google.com

http://google.com/Accessibility T @ @%7



