
Google Confidential and Proprietary

Life of a
Browser Component
Rescuing features from a tangled web
of dependencies to enable clean
reuse

joi@chromium.org

Google Confidential and Proprietary

Delicious Layer Cake, v1

//chrome

//net //webkit

//third_party/WebKit

//v8

//base

WebKit API

● At some point we had layering that looked like this.
● This is just for illustration, I'm skipping a bunch of things like //ipc, //ui, and

others.
● One problem with this model was that the magic goodness of our multi-

process, sandboxed architecture was in the same box as all of our user-facing
features, so it was a bit too easy to clutter the core architectural pieces with
feature-specific code, and it was impossible to reuse the magic goodness.

● Enter jam@, instigating the content module refactoring project.

Google Confidential and Proprietary

Luscious Layer Cake, v2

//chrome

//net //webkit

//third_party/WebKit

//v8

//base

//content

WebKit API

Content API

● This is much better - now the architectural bits are in //content and features
are in //chrome

● There's a problem there: That //chrome box is desktop Chrome, and also
ChromeOS, and also Chrome for Android (through use of #ifdefs). We needed
to be able to add new top-level apps that are significantly different from
desktop Chrome, e.g. Android WebView, without introducing a huge amount of
#ifdefs in //chrome.

Google Confidential and Proprietary

Decadent Layer Cake, v3

//chrome OR //android_webview OR //...

//net //webkit

//third_party/WebKit

//v8

//base

//content

WebKit API

Content API

//components

● What we've done is introduce another layer, //components, in between
//content and //chrome. It is a place for reusable features that can be used by
multiple top-level applications

Google Confidential and Proprietary

Example: Autofill - Before

//chrome

//content

Autofill

WebData for
Autofill

Profile

Translate

Password Mgr Infobars

Sync

UI Pages

Before componentizing Autofill, it lived in //chrome and depended concretely on an
awful lot of Chrome. It also depended on another "lower level" feature, the Autofill-
specific part of WebData.

Google Confidential and Proprietary

Example: Autofill - After

//components

//content

Autofill
WebData for

Autofill

Delegate

//chrome

Chrome Autofill
Delegate

We eliminated all of Autofill's concrete dependencies on parts of Chrome. The Autofill
part of WebData was dealt with by also componentizing it. Autofill now defines a
delegate interface that any embedder needs to implement. Chrome's implementation
of this still has the same dependencies "all over the place" as Autofill did before, but
it's much more manageable as it's a tiny piece of code, what you might consider
"glue" or "integration" code rather than implementation code.

Google Confidential and Proprietary

Example: Autofill - What Moved

//chrome/browser/autofill → //components/autofill/browser
//chrome/renderer/autofill → //components/autofill/renderer

//chrome/b.../webdata/[generic] → //components/webdata
//chrome/b.../webdata/[autofill] → //components/autofill/browser/webdata

Concretely, here's how things moved between directories.

Google Confidential and Proprietary

● Lives in //components
● Separate dynamic library in components build
● Generally speaking, a component contains a feature that

embedders of //content might want to add
○ Usually business logic, not UI

● Depends only "down"
○ //content and layers below
○ Other components (strictly acyclic)

● Defines embedder interfaces (delegates) to access resources
provided by its embedder

● Each embedder creates, owns and configures the component for
their use

What is a Browser Component?

Google Confidential and Proprietary

Structure of a Browser Component

● A component named xyz lives in //components/xyz
● Code should be enclosed in namespace xyz
● Has a strict DEPS file
● A component used only from one process type may contain code

directly in its directory
● A more complex component may have a directory per process, e.g.

○ //components/xyz/browser
○ //components/xyz/renderer
○ //components/xyz/common

To start a new Browser Component, just follow the rules from this slide and the
previous one.

Extracting an existing feature from //chrome into a component is harder; we have a
kind of cookbook for doing it though.

Google Confidential and Proprietary

Exfiltration step-by-step

1. Identify a feature you need to extract
2. Work from "leaf nodes"
3. Write a strict DEPS file with temporary exceptions
4. Reduce the set of temporarily-allowed dependencies to zero
5. Move the code to its //components/xyz directory
6. Fix up .gypi files and add export declarations to build it as a

component

Google Confidential and Proprietary

DEPS with Temporary Exclusions

include_rules = [
 # Sign-in is being componentized.
 "-chrome/common" ,
 "-chrome/browser" ,
 "+chrome/browser/signin" ,

 # TODO(joi): Get this list to zero.
 "!chrome/browser/profiles/profile.h" ,
 "!chrome/browser/ui/browser_commands.h" ,
 "!chrome/browser/ui/chrome_pages.h" ,
]

specific_include_rules = {
 # These files are staying in //chrome.
 r"(chrome_signin_manager_delegate|"
 r"signin_manager_factory)"
 r"\.(h|cc)": [
 "+chrome/browser" ,
 "+chrome/common" ,
],
}

- rules disallow a dependency
+ rules allow it
! rules are like + rules, except they specify something that is like a "temporary +". If
somebody adds a new #include of one of these files, they will get a presubmit
warning, so they're actively discouraged from working against you when you're
componentizing.

Google Confidential and Proprietary

Dependency removal cookbook

● Dependency inversion
○ This is the fundamental approach; introduce indirection e.g. through

delegates, where needed to remove knowledge of the embedder
● Passing more fundamental objects, instead of "everything"

objects
○ e.g. a PrefService and the SequencedTaskRunner for the IO thread,

instead of passing Profile
● Splitting objects that bring in tons of dependencies into "core

business logic" vs. "integration" or "UI"
○ The integration or UI implementation stays in the embedder, and owns

the core business logic, which moves to the component
● ... more in the full cookbook: http://goo.gl/LRgxK ...

Google Confidential and Proprietary

Making Componentization Easier

● There is a (small) Browser Components team
● Now focusing less on componentizing features...

○ Working on Sign-in [joi] and Extensions [yoz]
● ...and more on making it easier for others to do so

○ Extracting and generalizing the ProfileKeyedService framework
[phajdan, erikwright]

○ Switching to typed notifications (away from NotificationService)
[phajdan]

○ Deprecating reference-counted ProfileKeyedServices [caitkp]
○ Rationalizing start-up and shut-down [erikwright]
○ ...and whatever else we can think of that makes it easier to hack the

codebase

Google Confidential and Proprietary

Call to Action, Q&A

● Writing a new feature?
⇒ Make it a Browser Component if it might be reused outside
//chrome

● Need to reuse a feature?
⇒ Extract it into a Browser Component to reuse it cleanly

● Further documentation on www.chromium.org:
○ Browser Components Design doc http://goo.gl/hhQjL
○ Browser Components Cookbook http://goo.gl/LRgxK

● Need help?
○ browser-components-dev@chromium.org
○ joi@chromium.org

