
 A Client-Side Argument for
Changing TCP Slow Start

Mike Belshe - mbelshe@chromium.org - Jan 11, 2010

Slow Start is a key part of
TCP's congestion control

algorithms...
http://www.faqs.org/rfcs/rfc2581.html

http://www.faqs.org/rfcs/rfc2581.html

And, ''lack of attention to the
dynamics of packet forwarding

can result in severe service
degradation or "Internet

meltdown "'.
- Sally Floyd, http://www.rfc-editor.org/rfc/rfc2914.txt

http://www.rfc-editor.org/rfc/rfc2914.txt

But Web Browsers today are
inadvertently subverting slow

start....

HTTP Background

HTTP originally was simple...

1. Open a connection
2. Send a request
3. Receive a response
4. When the server hangs up, you're done!

Couldn't be easier to implement...

But not very efficient on the network...

But Inefficiency Didn't Matter Much

Web Pages were tiny
Just a little text and a picture of a dog or two
No CSS, JS, Video, etc.

As Web Pages grew, simple optimizations were built:
Keep-Alives recycle TCP connections
Better caching support
etc

But....

Web Pages Continued to Grow

Technologies evolved.
CSS, JavaScript, and image usage ballooned
The average site in the Top-100 now makes ~40 requests
per page (uncached)

Browsers were still limited to 2 connections per site (per spec).

Workarounds were easy...

Circumventing Slow Start

Sending only two concurrent requests was a bottleneck
Sites seeking speed needed more connections

"Subdomain sharding" was invented, since existing
browsers would open 2 connections to each subdomain

Eventually browsers kicked up connection limits
2 connections per domain became 6

And voila! Slow Start is subverted.

 6 Connections Per Domain
* 6 Subdomains
* 3 initial cwnd per connection

 108 initial cwnd (not exactly what RFC2581 suggests!)

Who is Wrong?

Is the TCP specification wrong?
Is Slow Start too aggressive?
Maybe the internet won't break if you turn it off...

Or maybe this is why we measure 1-1.5% packet loss on web
pages today...

I don't know, but these are the facts.

Trying to Build a Better Protocol

SPDY attempts to solve some of HTTP's more fundamental
problems:

serialized requests
not enough compression

And it is more efficient:
Overall 40% reduction in packets
15% reduction in bytes transmitted

And most of the time it is faster.

Slow Start Gets In The Way

SPDY attempts to be efficient by using the network more
intelligently.

Fewer TCP Connections.

But
SPDY uses a single connection per domain.
HTTP uses 6 connections per domain.

This gives HTTP an initial cwnd 6 times larger than an
"efficient" protocol!

Example: The Slow Start
Bottleneck in Action

In This Example

Network:
100Mbps
200ms RTT
0% loss

Browser
Chrome
Using SPDY, to load the page over a single connection
No resources are cached

WebPage
http://www.facebook.com/
But this can be witnessed on many many webpages.
There is nothing wrong with the facebook page content.

http://www.facebook.com/

What happens if we increase
the initial cwnd to..... 18?

Compare to Traditional HTTP

Increasing Initial CWND?

It's not a matter of whether we should increase
initial cwnd. For HTTP, it is already increased.

Data:
Sites are already using init-cwnd = 3.
HTTP uses 6 connections per domain, enabling init-cwnd = 18.
Sites use 3-8 subdomains, increasing init-cwnd to 54-144.

But Is It Realistic?

initcwnd is generally a global setting hidden inside TCP.

If we increase it globally, HTTP's init-cwnd is always at least 6X
larger than it should be.

Even with SPDY, until sites stop using subdomain sharding,
effective cwnd is higher than what TCP is attempting to
enforce.

Will the internet at large increase their cwnd? Needs a kernel
patch at the minimum - possibly a sockets API change.

Conclusions

Any TCP-based protocol attempting to be maximally
efficient on the network will use fewer TCP connections than
HTTP.
But using fewer connections is a handicap due to TCP's
Slow Start on high latency links.
Slow Start, while specified at ~2-4 pkts, has, in practice,
already been increased far beyond that by use of multiple
connections and subdomains.
If TCP cannot increase initcwnd, the next generation HTTP
protocol will likely not be TCP based.

