
2014 Chrome OS
Firmware Summit
Chrome EC

● Chrome EC is open source
○ chromiumos/platform/ec.git

● Chrome EC is designed for security
○ RO and RW regions

○ RW update is signed and handled by host firmware

○ EC Software Sync is part of Verified Boot

● Support for different ARM SOCs
○ Texas Instruments Stellaris Cortex-M4

○ ST Micro STM32 Cortex-M3

○ More in progress...

https://chromium.googlesource.com/chromiumos/platform/ec/
https://chromium.googlesource.com/chromiumos/platform/ec/

Source Tree Layout
board/$BOARD/ Board specific code and configuration details. This includes the GPIO map,

battery parameters, and set of tasks to run for the device.

chip/$CHIP/ IC specific code for interfacing with registers and hardware blocks (adc, jtag,
pwm, uart etc…)

common/ A mix of upper-level code that is shared across boards. This includes the
charge state machine, fan control, and the keyboard driver (amongst other
things).

core/ Lower level code for task and memory management.

driver/ Low-level drivers for ALS, charge controllers, I2C/onewire LED controllers, and
I2C temperature sensors.

include/ Header files for core and common code.

power/ Power sequencing logic for specific host CPU families (Ivy Bridge, Haswell,
Tegra, etc.)

Source Tree Layout (continued)

test/ Unit tests for the EC (“make runtests”). Please contribute new tests if writing new
functionality.

util/ Host utilities and scripts for flashing the EC. Also includes “ectool” used to query and send
commands to the EC from userspace.

build/ Build artifacts are generated here. Be sure to delete this and rebuild when switching
branches.

Terminology

AP / host Application Processor. The system CPU, which
actually runs Chrome OS.

Hibernate EC power-down state. Entered when on battery
power and the AP has been off for 60 minutes.

Battery cutoff / ship
mode

Battery is logically disconnected or disabled for
storage/shipping.

Task One of several priority-sorted independent threads of
execution (power states, charger, keyboard, etc.)

Watchdog Reboots the EC if normal tasks are stuck or starved.

Silego chip Hardware am-I-trustworthy module. It has a one-way
latch that is cleared at a hard EC reset and set when
the RO firmware jumps to the RW firmware.

Firmware architecture overview

● Tasks
● GPIOs & Interrupts
● Modules
● Hooks
● Console
● Host commands

○ memory-mapped
● Config

Tasks

● EC typically runs 6-10 independent tasks
○ Configured in board/*/ec.tasklist

● Each task has its own stack (256-640 bytes)
● Task switching is interrupt-driven
● Strictly ordered list of task priorities

○ When a higher-priority task wakes up, it rips control away from a
lower-priority task.

● Events, mutexes, timers

● There is no heap (no malloc/free). Instead there is a
small number of fixed-size memory buffers which may
be temporarily allocated by tasks when needed.

/**
 * List of enabled tasks in the priority order
 *
 * The first one has the lowest priority.
 *
 * For each task, use the macro TASK_ALWAYS(n, r, d, s) for base tasks and
 * TASK_NOTEST(n, r, d, s) for tasks that can be excluded in test binaries,
 * where :
 * 'n' is the name of the task
 * 'r' is the main routine of the task
 * 'd' is an opaque parameter passed to the routine at startup
 * 's' is the stack size in bytes; must be a multiple of 8
 */
#define CONFIG_TASK_LIST \
 TASK_ALWAYS(HOOKS, hook_task, NULL, LARGER_TASK_STACK_SIZE) \
 TASK_ALWAYS(CHARGER, charger_task, NULL, TASK_STACK_SIZE) \
 TASK_NOTEST(CHIPSET, chipset_task, NULL, TASK_STACK_SIZE) \
 TASK_NOTEST(KEYPROTO, keyboard_protocol_task, NULL, TASK_STACK_SIZE) \
 TASK_ALWAYS(HOSTCMD, host_command_task, NULL, TASK_STACK_SIZE) \
 TASK_ALWAYS(CONSOLE, console_task, NULL, LARGER_TASK_STACK_SIZE) \
 TASK_ALWAYS(POWERBTN, power_button_task, NULL, TASK_STACK_SIZE) \
 TASK_NOTEST(KEYSCAN, keyboard_scan_task, NULL, TASK_STACK_SIZE)

board/*/ec.tasklist

GPIOs (board/*/board.c)
GPIOs are the normal inputs, outputs, and interrupts.

const struct gpio_info gpio_list[] = {
 /* Inputs with interrupt handlers are first for efficiency */
 {"POWER_BUTTON_L", LM4_GPIO_A, (1<<2), GPIO_INT_BOTH_DSLEEP,
 power_button_interrupt},
 {"LID_OPEN", LM4_GPIO_A, (1<<3), GPIO_INT_BOTH_DSLEEP,
 lid_interrupt},
 {"AC_PRESENT", LM4_GPIO_H, (1<<3), GPIO_INT_BOTH_DSLEEP,
 extpower_interrupt},
…
 /* Other inputs */
 {"FAN_ALERT_L", LM4_GPIO_B, (1<<0), GPIO_INPUT, NULL},
 {"USB1_OC_L", LM4_GPIO_E, (1<<7), GPIO_INPUT, NULL},
 {"USB2_OC_L", LM4_GPIO_E, (1<<0), GPIO_INPUT, NULL},
…
 /* Outputs; all unasserted by default except for reset signals */
 {"CPU_PROCHOT", LM4_GPIO_B, (1<<1), GPIO_OUT_LOW, NULL},
 {"PP1350_EN", LM4_GPIO_H, (1<<5), GPIO_OUT_LOW, NULL},
 {"PP3300_DSW_GATED_EN", LM4_GPIO_J, (1<<3), GPIO_OUT_LOW, NULL},
 {"PP3300_DX_EN", LM4_GPIO_J, (1<<2), GPIO_OUT_LOW, NULL},
…

Modules

Common functionality and state machines are grouped into
logical modules. These include

ADC, CHARGER, CHIPSET, DMA, GPIO, HOOK, I2C,
KEYBOARD, LPC, PECI, POWER_LED,
PWM_FAN, PWM_LED, THERMAL, UART,

and many others. The modules are largely self-contained
once all the GPIOs are connected and configured.

Each module has its own initialization routines to prepare
its state machine and enable its interrupts.

board/*/board.c

Configuring special-purpose GPIOs for some common modules.

/* Pins with alternate functions */
const struct gpio_alt_func gpio_alt_funcs[] = {
 {GPIO_A, 0x03, 1, MODULE_UART, GPIO_PULL_UP}, /* UART0 */
 {GPIO_A, 0x40, 3, MODULE_I2C}, /* I2C1 SCL */
 {GPIO_A, 0x80, 3, MODULE_I2C, GPIO_OPEN_DRAIN}, /* I2C1 SDA */
 {GPIO_B, 0x04, 3, MODULE_I2C}, /* I2C0 SCL */
 {GPIO_B, 0x08, 3, MODULE_I2C, GPIO_OPEN_DRAIN}, /* I2C0 SDA */
 {GPIO_B, 0x40, 3, MODULE_I2C}, /* I2C5 SCL */
 {GPIO_B, 0x80, 3, MODULE_I2C, GPIO_OPEN_DRAIN}, /* I2C5 SDA */
 {GPIO_G, 0x30, 1, MODULE_UART}, /* UART2 */
 {GPIO_J, 0x40, 1, MODULE_PECI}, /* PECI Tx */
 {GPIO_J, 0x80, 0, MODULE_PECI, GPIO_ANALOG}, /* PECI Rx */
 {GPIO_L, 0x3f, 15, MODULE_LPC}, /* LPC */
 {GPIO_M, 0x33, 15, MODULE_LPC}, /* LPC */
 {GPIO_N, 0x0c, 1, MODULE_PWM_FAN}, /* FAN0PWM2 */
};
const int gpio_alt_funcs_count = ARRAY_SIZE(gpio_alt_funcs);

Hooks

● Hooks are callback functions
○ Associated with specific event categories
○ Invoked when that event occurs.

● May also be called after some specified delay
(“deferred” hooks).

● Typically registered by one module, but invoked by a
different module.

● The callback functions execute in the stack of the calling
task (so deadlock is possible).

Hook Type Called When

INIT At EC initialization

PRE_FREQ_CHANGE About to change the clock frequency

FREQ_CHANGE Clock frequency changed

SYSJUMP About to jump to another firmware image (RO to RW, for
example)

CHIPSET_PRE_INIT Before the AP starts up

CHIPSET_STARTUP AP is starting up

CHIPSET_RESUME AP is resuming from suspend (or booting)

CHIPSET_SHUTDOWN AP is shutting down or suspending

AC_CHANGE AC power state changed

LID_CHANGE Lid was opened or closed (debounced)

POWER_BUTTON_CHANGE Power button pressed or released (debounced)

CHARGE_STATE_CHANGE Charge state machine status has changed

TICK Every 250ms (or 500ms on some systems)

SECOND Once per second

Console

The console task provides a command-line interface on the
EC’s serial port.

The serial port is accessible through the servo board, via
the debug connector.

This is the primary means of testing and debugging.

Console commands are trivial to add:

int command_foo(int argc, char *argv[]) { … }
DECLARE_CONSOLE_COMMAND(foo, command_foo, …);

Console commands
> help
Known commands:
 adc fanset hostcmd pecirdpkg syslock
 apreset flasherase hostevent pecitemp t6cal
 apshutdown flashinfo i2cscan peciwrpkg taskinfo
 apthrottle flashwp i2cxfer port80 taskready
 battery flashwrite kbd powerbtn temps
 battfake gettime kblight powerindebug thermalget
 chan gpioget kblog powerinfo thermalset
 charger gpioset kbpress powerled timerinfo
 codeset hangdet ksstate pwmduty tmp006
 crash hash lidclose reboot typematic
 ctrlram hcdebug lidopen rtc usbchargemode
 dptftemp help lightbar rw version
 fanauto hibdelay mmapinfo shmem waitms
 fanduty hibernate panicinfo sysinfo ww
 faninfo history peciprobe sysjump
HELP LIST = more info; HELP CMD = help on CMD.
>

Host commands

The AP communicates with the EC through host
commands.

1. AP sends a command + data to the EC
2. EC processes the command
3. EC responds with result + data to the AP

The data can be of varying size (including zero), in each
direction. The commands, data structures, result codes,
and numerous other parameters are defined in

include/ec_commands.h

Mapped memory

Some systems have memory regions shared between the
EC and AP address space.

Those systems provide a small number of read-only (to the
AP) memory locations where the EC maintains various
values that the AP may find interesting (battery voltage, fan
speeds, sensor readings, etc.)

These are defined in include/ec_commands.h

For systems without shared memory, there are host
commands to read those values.

include/config.h

This file defines all the build-time configuration options to
select various modules, features, customization, debugging
levels, etc.

When adding new features, the appropriate CONFIG_
option should be added to this file first.

Each board then enables the appropriate options in
board/*/board.h and initializes any data structures in
board/*/board.c

board/*/board.h
/* Optional features */
#define CONFIG_BACKLIGHT_REQ_GPIO GPIO_PCH_BKLTEN
#define CONFIG_BATTERY_SMART
#define CONFIG_BOARD_VERSION
#define CONFIG_CHARGER
#define CONFIG_CHARGER_BQ24738
#define CONFIG_CHARGER_DISCHARGE_ON_AC
#define CONFIG_CHIPSET_CAN_THROTTLE
#define CONFIG_CHIPSET_HASWELL
#define CONFIG_POWER_COMMON
#define CONFIG_CMD_GSV
#define CONFIG_EXTPOWER_FALCO
#define CONFIG_EXTPOWER_GPIO
#define CONFIG_FANS 1
#define CONFIG_KEYBOARD_BOARD_CONFIG
#define CONFIG_KEYBOARD_PROTOCOL_8042
#define CONFIG_LOW_POWER_IDLE
#define CONFIG_PECI_TJMAX 100
#define CONFIG_POWER_BUTTON
#define CONFIG_POWER_BUTTON_X86
#define CONFIG_SWITCH_DEDICATED_RECOVERY
#define CONFIG_TEMP_SENSOR
#define CONFIG_TEMP_SENSOR_G781

● AP Power sequencing

● Battery Charging

● Thermal Management

● Keyboard

● Buttons and Switches

● Backlights, Indicator LEDs

● Various other board-specific peripherals

Primary responsibilities of the EC

● Each AP family has its own
○ Power states
○ Voltage regulators
○ Control GPIOs (both input and output)
○ Transition rules
○ Timing requirements
○ Trigger events

● The EC must manage and respond to all those
requirements as the AP boots, sleeps, idles, or
transitions between various subtle states.

● It must also ensure that certain peripherals are brought
up and down accordingly (USB, WiFi, etc.)

Power Sequencing

power/haswell.c
 case POWER_S5S3:
 /* Enable PP5000 (5V) rail. */
 gpio_set_level(GPIO_PP5000_EN, 1);
 if (power_wait_signals(IN_PGOOD_PP5000)) {
 chipset_force_shutdown();
 return POWER_S5G3;
 }
 /* Wait for the always-on rails to be good */
 if (power_wait_signals(IN_PGOOD_ALWAYS_ON)) {
 chipset_force_shutdown();
 return POWER_S5G3;
 }

 /* Turn on power to RAM */
 gpio_set_level(GPIO_PP1350_EN, 1);
 if (power_wait_signals(IN_PGOOD_S3)) {
 chipset_force_shutdown();
 return POWER_S5G3;
 }

 gpio_set_level(GPIO_ENABLE_TOUCHPAD, 1);

 /* Call hooks now that rails are up */
 hook_notify(HOOK_CHIPSET_STARTUP);
 return POWER_S3;

Most Chromebooks use Smart Battery technology
http://sbs-forum.org/specs/sbdat110.pdf

● The battery asks for specific voltage and current
● The charger circuitry provides it

The EC handles a few special cases:
● Trickle-charging a fully-discharged battery until it starts working again
● Forcing different charging curves under high- or low-power conditions
● Working around errata in the Smart Battery components
● Ensuring that temperatures are within safe operating ranges
● Manual charging for non-Smart batteries

Each board may have some parameters that are specific to
an individual battery pack or charger.

Battery Charging

http://sbs-forum.org/specs/sbdat110.pdf
http://sbs-forum.org/specs/sbdat110.pdf

board/*/battery.c

static const struct battery_info info = {
 .voltage_max = 8400,
 .voltage_normal = 7400,
 .voltage_min = 6000,

 /* Pre-charge values. */
 .precharge_current = 256, /* mA */

 .start_charging_min_c = 0,
 .start_charging_max_c = 45,
 .charging_min_c = 0,
 .charging_max_c = 45,
 .discharging_min_c = -10,
 .discharging_max_c = 60,
};

Temp sensors

> temps
 I2C-USB C-Die : 312 K = 39 C
 I2C-USB C-Object : Not calibrated
 I2C-PCH D-Die : 314 K = 41 C
 I2C-PCH D-Object : Not calibrated
 I2C-Hinge C-Die : 316 K = 43 C
 I2C-Hinge C-Object : Not calibrated
 I2C-Charger D-Die : 313 K = 40 C
 I2C-Charger D-Object: Not calibrated
 ECInternal : 321 K = 48 C
 PECI : 324 K = 51 C
>

Thermal Management

Independent thresholds can deliver host events (ACPI,
PROCHOT), control fan speeds, or force power off based on
any sensor readings.

> thermalget
sensor warn high halt fan_off fan_max name
 0 0 0 0 0 0 I2C-USB C-Die
 1 0 0 0 0 0 I2C-USB C-Object
 2 0 0 0 0 0 I2C-PCH D-Die
 3 0 0 0 0 0 I2C-PCH D-Object
 4 0 0 0 0 0 I2C-Hinge C-Die
 5 0 0 0 0 0 I2C-Hinge C-Object
 6 0 0 0 0 0 I2C-Charger D-Die
 7 0 0 0 0 0 I2C-Charger D-Object
 8 0 0 0 0 0 ECInternal
 9 373 375 377 333 363 PECI
>

Thermal Management

Fans are continuously variable, with hysteresis and
min/max settings. They can also be manually controlled by
the AP (but we think the EC will do a better job).

> faninfo
Actual: 0 rpm
Target: 0 rpm
Duty: 0%
Status: 0 (not spinning)
Mode: rpm
Auto: yes
Enable: yes
Power: yes
>

Thermal Management

For x86-based systems, the EC provides a “standard” 8042
AT-style interface (common/keyboard_8042.c)

ARM-based systems use a binary format
(common/keyboard_mkbp.c), which merely pushes changes in the
scan matrix up to the kernel (enabled in the kernel by
CONFIG_KEYBOARD_CROS_EC)

In either case, the keyboard scan matrix is defined in the
board-specific configuration.

Keyboard

board/*/board.c

struct keyboard_scan_config keyscan_config = {
 .output_settle_us = 40,
 .debounce_down_us = 6 * MSEC,
 .debounce_up_us = 30 * MSEC,
 .scan_period_us = 1500,
 .min_post_scan_delay_us = 1000,
 .poll_timeout_us = SECOND,
 .actual_key_mask = {
 0x14, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff,
 0xa4, 0xff, 0xf6, 0x55, 0xfa, 0xc8
 },
};

● LEDs

● Backlight

● WiFi/USB power

● Lightbar, accelerometer, dedicated buttons, …

These are generally board-specific. In most cases they can
be handled by HOOK callbacks.

Various other peripherals

EC Software Sync

It is important that the AP firmware (BIOS) and the EC
firmware remain compatible through upgrades. At every
cold boot/reset of the EC, this happens*

1. The EC boots its RO firmware, and powers on the AP.
2. The AP boots its RO firmware.
3. The AP verifies its RW firmware and jumps to it.
4. The EC computes a hash of its RW firmware.
5. The AP RW firmware contains a copy of the EC’s RW firmware. The AP

compares its hash with the EC’s hash.
6. If they differ, the AP gives the EC the correct RW firmware, which the EC

writes to its flash.
7. The EC jumps to its RW firmware.

* Normal boot only. In recovery mode, they both stay in RO. There also are a few other tricks to
ensure the EC isn’t lying about its hash.

Software Sync

If you’re developing new EC code, it’s really annoying
when the AP silently replaces your changes at every boot.

To disable Software Sync, we can set a flag in the GBB
that instructs the AP to skip that step:

/usr/share/vboot/bin/set_gbb_flags.sh 0x239

0x00000001 GBB_FLAG_DEV_SCREEN_SHORT_DELAY
0x00000008 GBB_FLAG_FORCE_DEV_SWITCH_ON
0x00000010 GBB_FLAG_FORCE_DEV_BOOT_USB
0x00000020 GBB_FLAG_DISABLE_FW_ROLLBACK_CHECK
0x00000200 GBB_FLAG_DISABLE_EC_SOFTWARE_SYNC

Supporting a new AP board
● Start with the most similar system (reference design)

● Build the reference firmware yourself to test the process.
Bonus points for running it on hardware.

● Copy the reference board sources into a new board/ directory

● Disable or stub out as much as possible
○ Edit board/*/board.h, board/*/board.c
○ Verify tasks in board/*/ec.tasklist
○ File bugs and add TODO() comments for missing features

● Start by updating the GPIO assignments
● Use the EC console to test GPIOs (gpioget, gpioset)

● Configure additional modules one at a time

● Compile, test, debug, repeat

Development and debugging tools

servo Hardware debug board from Google.
Connects to debug port on
Chromebook, USB on Linux desktop.

servod Daemon to arbitrate access to servo.
Exposes EC and AP serial ports, JTAG,
numerous controls and switches.

openocd Programs the EC flash through servo’s
JTAG ports.

flashrom Programs the AP flash through servo,
EC and AP flash from the Chromebook
itself.

Questions?

