
coreboot porting for ARM



Contents

● Current Status

● Difference between x86 & ARM

● Early Boot flow

● SRAM

● Device configuration

● Payloads / libpayload



Current Status

● Supported ARM SOCs

○ Samsung Exynos 5250

○ Samsung Exynos 5420

○ Nvidia Tegra 124

○ Texas Instruments AM335x

○ Allwinner A10

● Emulators

○ Qemu / ARMv7

○ ARM64 Foundation Model



Typical x86 system (“2010 PC”)

* graphics by Peter Stuge



Typical (ChromeOS) ARM system
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Difference between (typical) ARM and x86 Systems

● x86: Extensible

○ SPD for RAM

○ PCI devices

○ LPC

○ cache as ram

○ ACPI, SMM

● ARM: Simple Design, Low Power

○ In-SOC 1st level boot firmware

○ No memory mapped system firmware

○ All peripherals memory mapped or attached to SPI / SMBUS

○ SRAM

○ No ACPI (so far), no SMM



Early Boot Flow

BL1 (in SOC)

BL2 (signed, provided by vendor)

coreboot bootblock
(loaded into SRAM by BL2)

Bootblock

● set up stack

● load romstage from cbfs to SRAM

● needs SPI/eMMC driver to access system firmware

● set up MMU for caching

Romstage

● set up PMIC, GPIOs, DRAM

● executed from SRAM

● load ramstage to DRAM, execute ramstage

coreboot romstage

coreboot ramstage

payload



SRAM (Example: Exynos 5420)

vendor-provided BL1

variable length bootblock checksum header

bootblock (32k max)

romstage (128k max)

TTB buffer

cache for CBFS data

stack

kernel shared page

0x2020000 - 0x2024400 (17K)

0x2024400 - 0x2024410 (16B)

0x2024410 - 0x2030000 (~47K)

0x2030000 - 0x2058000 (160K)

0x2058000 - 0x205c000 (16K)

0x205c000 - 0x206f000 (76K)

0x206f000 - 0x2073000 (16K)

0x2073000 - 0x2074000 (4K)

iSRAM



Device Configuration

● Some settings mainboard specific

● Chipset can export per-board settings using devicetree

● Not automatic: need chip.h structure and C code to honor setting

● SOC setup mostly static and automatic

chip soc/samsung/exynos5420
  device cpu_cluster 0 on end
  register "xres" = "1366"
  register "yres" = "768"
  register "framebuffer_per_pixel" = "16"
  register "clkval_f" = "2"
  register "upper_margin" = "14"
  register "lower_margin" = "3"
  register "vsync" = "5"
  register "left_margin" = "80"
  register "right_margin" = "48"
  register "hsync" = "32"
end

struct soc_samsung_exynos5420_config {
  int clkval_f;
  int upper_margin;
  int lower_margin;
  int vsync;
  int left_margin;
  int right_margin;
  int hsync;
  int xres;
  int yres;
  int framebuffer_bits_per_pixel;
  int usb_vbus_gpio;
  int usb_hsic_gpio;
 };



libpayload

● abstraction for payloads
● separate set of drivers per SOC: UART, storage, timer…

Payloads

● ChromeOS specific: depthcharge
● In development: FILO
● device tree handling



?

Questions/Comments?

firmware@chromium.org


