
coreboot porting for ARM

Contents

● Current Status

● Difference between x86 & ARM

● Early Boot flow

● SRAM

● Device configuration

● Payloads / libpayload

Current Status

● Supported ARM SOCs

○ Samsung Exynos 5250

○ Samsung Exynos 5420

○ Nvidia Tegra 124

○ Texas Instruments AM335x

○ Allwinner A10

● Emulators

○ Qemu / ARMv7

○ ARM64 Foundation Model

Typical x86 system (“2010 PC”)

* graphics by Peter Stuge

Typical (ChromeOS) ARM system

RAM (soldered down)
SOC

Memory
Controller

Graphics

eMMC

SPI

Clocks

core
core

core
core

SMBUS boot rom
(not memory mapped)

SRAM

RAM (soldered down)

TPM

Difference between (typical) ARM and x86 Systems

● x86: Extensible

○ SPD for RAM

○ PCI devices

○ LPC

○ cache as ram

○ ACPI, SMM

● ARM: Simple Design, Low Power

○ In-SOC 1st level boot firmware

○ No memory mapped system firmware

○ All peripherals memory mapped or attached to SPI / SMBUS

○ SRAM

○ No ACPI (so far), no SMM

Early Boot Flow

BL1 (in SOC)

BL2 (signed, provided by vendor)

coreboot bootblock
(loaded into SRAM by BL2)

Bootblock

● set up stack

● load romstage from cbfs to SRAM

● needs SPI/eMMC driver to access system firmware

● set up MMU for caching

Romstage

● set up PMIC, GPIOs, DRAM

● executed from SRAM

● load ramstage to DRAM, execute ramstage

coreboot romstage

coreboot ramstage

payload

SRAM (Example: Exynos 5420)

vendor-provided BL1

variable length bootblock checksum header

bootblock (32k max)

romstage (128k max)

TTB buffer

cache for CBFS data

stack

kernel shared page

0x2020000 - 0x2024400 (17K)

0x2024400 - 0x2024410 (16B)

0x2024410 - 0x2030000 (~47K)

0x2030000 - 0x2058000 (160K)

0x2058000 - 0x205c000 (16K)

0x205c000 - 0x206f000 (76K)

0x206f000 - 0x2073000 (16K)

0x2073000 - 0x2074000 (4K)

iSRAM

Device Configuration

● Some settings mainboard specific

● Chipset can export per-board settings using devicetree

● Not automatic: need chip.h structure and C code to honor setting

● SOC setup mostly static and automatic

chip soc/samsung/exynos5420
 device cpu_cluster 0 on end
 register "xres" = "1366"
 register "yres" = "768"
 register "framebuffer_per_pixel" = "16"
 register "clkval_f" = "2"
 register "upper_margin" = "14"
 register "lower_margin" = "3"
 register "vsync" = "5"
 register "left_margin" = "80"
 register "right_margin" = "48"
 register "hsync" = "32"
end

struct soc_samsung_exynos5420_config {
 int clkval_f;
 int upper_margin;
 int lower_margin;
 int vsync;
 int left_margin;
 int right_margin;
 int hsync;
 int xres;
 int yres;
 int framebuffer_bits_per_pixel;
 int usb_vbus_gpio;
 int usb_hsic_gpio;
 };

libpayload

● abstraction for payloads
● separate set of drivers per SOC: UART, storage, timer…

Payloads

● ChromeOS specific: depthcharge
● In development: FILO
● device tree handling

?

Questions/Comments?

firmware@chromium.org

