
Chrome OS Firmware
December 2017
Duncan Laurie

Verified Boot

Verified Boot Objectives
● Provide a secure computing platform for users

● Be as fast as possible while doing it

● Provide hardware level recovery from remote attacks

● Allow users to turn off verification

● Does not protect against local attack that requires opening device

Verified Boot
● Root of trust is Read-Only SPI flash

○ Enforced by hardware write protection
○ Contains first executed code (bootblock)
○ Public keys to verify other stages

● RO firmware verifies RW firmware

● RW firmware verifies OS kernel

● OS kernel verifies root filesystem

RO Firmware

RW Firmware

OS Kernel

Filesystem

Verified Mode
● Boots only Google-signed Chrome OS images

● Performs a full verification of firmware and kernel

● Uses RO + RW firmware

● Boot in recovery mode if verification fails
○ RW firmware corrupt
○ Block device corrupt
○ Hardware failure

Recovery Mode
● Used to get a Chrome OS device back to a trusted state

● RO firmware can only boot signed USB image
○ Must be signed by Google with Recovery Key
○ Different from normal boot key

● Can be initiated by the system (untrusted)
○ Due to verification or hardware fault

● Can be initiated by the user with physical presence (trusted)
○ Boot recovery image from USB
○ Switch to developer mode

Developer Mode
● Turn Kernel verification off without voiding warranty

● Can be disabled with enterprise policy

● User is warned at boot that verification is turned off

● Requires physical presence (via recovery mode) to enable

● Device state (including TPM owner) is cleared when transitioning

● Provides increased access to the system
○ Root shell
○ Boot images signed with different keys
○ Set flags to boot from USB or in legacy mode

Legacy Mode
● Unsupported method for booting alternate OS

● Can boot any payload from flash
○ Currently include SeaBIOS for legacy CSM
○ Moving to TianoCore

● Must be enabled after transition to developer mode

Complete Device Ownership
● Developers or those who do not want to use Chrome OS

● Open device case to disable write protect
○ Typically voids warranty

● Set RO flags that alter boot behavior
○ Short developer screen timeout
○ Force enable of developer or legacy mode so it cannot be disabled at boot

● Flash complete custom firmware image
○ Download and build from coreboot.org

Verified Boot and TPM
● Must contain Google certificate to identify Chrome OS device

○ This certificate cannot be made available to other OS

● Firmware does not use TPM for cryptographic functions
○ Preventing key rollback attacks

● Firmware and Kernel key versions in NVRAM
○ Store boot mode state (developer, recovery)

● Platform Configuration Registers
○ TPM is locked by firmware, except in recovery mode
○ Physical Presence is asserted and locked

● TPM hardware
○ New Chrome OS devices use Google H1 security chip (TPM 2.0 compatible)
○ Drivers provided by coreboot/Depthcharge
○ Must be available before memory is up

GBB
root key

FW Keyblock
FW data key

signature

root key

RSA8192

FW Preamble
kernel subkey

FW body hash

firmware
data key

RSA4096

signature

FW Body

Firmware Verification
Read-only firmware looks in the GBB,
finds the root key in read-only flash.

The root key validates the RW firmware’s
keyblock, which contains the firmware
data key.

The firmware data key validates the
firmware preamble (which contains the
kernel subkey) and the read/write
firmware body.

Kernel Keyblock

kernel data key

signature

kernel
subkey

RSA4096

Kernel Preamble
kernel body
signature

kernel
data key

RSA2048

signature

Kernel Body

Kernel Verification
RW firmware uses the kernel subkey to
verify the kernel’s keyblock, which contains
the kernel data key.

The kernel data key verifies the kernel
preamble and the kernel body.

The kernel image contains a hash, used to
verify the bundle of disk block hashes.

Hash
0,0

Block
0

Block
127

Hash
0,127

Block
16256

Block
16383

Hash
0

Root
Hash

Hash
1,0

Block
16384

Block
32639

Hash
1,127

Block
32640

Block
32767

Hash
1

Filesystem Verification
● Root filesystem is a Read-Only image

○ Hash each block in the image and put into a tree

● On boot, root hash is specified on kernel command line and signed
● Subsequent blocks are read, hashed, and stored in page cache

Verified Boot Disk Layout
● Two root filesystems and two kernel partitions

● Kernel A pairs with file system A

● Kernel B pairs with file system B

● One pair is active and the other is backup

● The active partition is read-only

● The inactive partition can be updated

● EFI partition contains grub and syslinux
○ Provided for booting on non-Chrome devices

Root Filesystem B

Kernel A

Root Filesystem A

Stateful Partition
(Expands to fill disk)
Encrypted user data

Header - GPT

Kernel B

EFI Partition / syslinux
Backup - GPT

SSD/eMMC

Firmware Architecture

Chrome OS Intel Firmware Architecture

coreboot

depthcharge

EC

Intel FSP

● 3 copies of the firmware in flash

○ 1 in RO flash for recovery mode
○ 2 in RW flash for verified A / B boot

● Each firmware component is independent

○ Flexibility in development
○ Distinct boundaries for different code licenses
○ APIs for passing data

Firmware Layout

Boot Block (48K)
Verified Boot (64K)
Public Keys

coreboot

depthcharge

EC

Intel FSP

Recovery Firmware

coreboot

depthcharge

EC

Intel FSP

RW-A Firmware

coreboot

depthcharge

EC

Intel FSP

RW-B Firmware

Read-Only Flash Read-Write Flash

Legacy CSM
MRC Cache
Event Log

SPI Descriptor
Management Engine

Reset

coreboot

Verified Boot

SOC

Mainboard

Devices

● GPLv2 License

● Designed for code sharing and re-use

● Support all architectures, SOCs, boards in one tree

● Intel SOC support is co-developed by Google and Intel

● Board support is based on reference board model

● Verified Boot does firmware selection (A/B/recovery)

● SMM use is intentionally very minimal

● Event logging is extensive

ACPI

SMM

Event Logging

Depthcharge

Verified Boot

Storage Drivers

TPM Drivers

Sound Drivers

● GPLv2 License

● Chrome OS payload for coreboot

● Storage drivers for SATA, eMMC, NVMe, USB

● Sound drivers for beep (security/accessibility requirement)

● Display engine for drawing localized firmware screens

● Verified Boot does kernel selection based on GPT flags

● Handles Chrome OS boot modes

○ Verified Mode
○ Recovery Mode
○ Developer Mode

Display Engine

Android Fastboot

Debug Shell

Intel Firmware Support Package

Memory Init

Silicon Init

Finalization Steps

GOP / VBT

● Intel Proprietary License

● FSP Spec designed by Intel and Google

● Provided by Intel in source and binary form

● Responsible for most SOC setup

○ Memory, CPU, PCH, GPU, ME, etc

● Configuration via UPD

○ Turned into “Policy” settings for reference code

Embedded Controller

Verified Boot (opt)

Power Sequencing

Sensors

USB PD TCPM

● BSD License

● Supports RO/RW firmware model

○ Both copies are the same
○ Can “jump” between images

● Verified Boot Software Sync for updates

○ Compare hash between EC and update data
○ Push down new RW update if needed
○ Jump to new RW image before loading OS

● Can also do Verified Boot by itself

○ With more impact to boot time

Battery Charging

Recovery Mode

Debug CLI

EC Software Sync

EC (RO)
RW Hash = 1234...

AP (RW)
EC RW Hash = a2b3...

EC (RO)
Write protect RW region

until reset

AP (RO)
Verify RW firmware

AP (jump to RW)

EC (RO)

EC (RO)
Write RW blocks

Boot AP

Share
Hash

Write
Updates

EC (jump to RW)

Reset

EC (RW)

AP (RW)
Tell EC to jump to RW

Jump
to RW

Management Engine
● Intel Management Engine security is inadequate

○ Requires RW access to flash and host memory
○ Reduced control over the platform
○ Increased complexity in host firmware

● Out of band access to the system is a crutch for not having OS control
○ Vertical integration of Chrome OS makes this unnecessary

● Closed source firmware with numerous security issues
○ Running unsigned code on Intel Management Engine (2017)
○ ThinkPwn UEFI bug affects multiple vendors (2016)
○ Hacking Team releases UEFI rootkit (2015)
○ New attack methods to defeat Secure Boot (2014)

https://www.blackhat.com/eu-17/briefings/schedule/#how-to-hack-a-turned-off-computer-or-running-unsigned-code-in-intel-management-engine-8668
https://www.notebookcheck.net/ThinkPwn-UEFI-bug-discovered-on-a-wide-range-of-notebooks.169286.0.html
http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-uses-uefi-bios-rootkit-to-keep-rcs-9-agent-in-target-systems/
https://www.networkworld.com/article/2358246/byod/new-attack-methods-can---39-brick--39--systems--defeat-secure-boot--researchers-say.html

Porting

Intel SOC Support in coreboot
● Leverage common code for reduced porting effort

● Provide wrapper for platform-specific FSP configuration

● SOC device setup that is not handled by FSP

● ACPI code for SOC devices

● GPIO community description

● Intel provided binaries for the SOC
○ GOP and VBT binaries for video initialization
○ NHLT binaries for OS sound drivers
○ Microcode binaries for the CPU

Intel SOC Common Code
● Significant code sharing across SOC

● Simplify SOC porting effort

● Co-developed by Intel and Google

● Reduced code for SOC support
○ Skylake+Kabylake: 8000 lines
○ Apollolake: 4000 lines
○ Cannonlake: 4000 lines

● System Agent
● CPU
● UART drivers
● GPIO setup and control
● I2C controller init and drivers
● SPI controller init and drivers
● ACPI code
● SMM
● SGX

Mainboard Support in coreboot
● Abstracted device tree with configuration data

● Builds on SOC support and common code

● Very little C or ACPI code for a mainboard
○ Flexible enough to support it for debug or workarounds

● Many configuration items are common no matter what firmware base is used
○ Intel reference code policy settings (aka FSP UPD)
○ On-board memory configuration
○ GPIO configuration
○ On-board devices

Mainboard Porting: Baseboard & Variants
● Reference board model applied to firmware

● Baseboard
○ Co-developed by Google and Intel to support Chrome OS ecosystem

● Variant
○ Developed by partners for a shipping product
○ Support from Google and Intel

● Variant is applied as an overlay on top of baseboard
○ Inherit by default, but can customize

● Variant is very low effort porting from reference board

Mainboard Porting Example: Pixelbook
● 500 lines of C code

○ ½ is for GPIO configuration described as a C structure

● 100 lines of ACPI code (for the DPTF profile)

● 400 lines of Device Tree
○ Board specific FSP settings
○ Voltage regulator configuration
○ PCIe root port configuration
○ USB port configuration
○ On-board device description

● SPD for onboard LPDDR3 memory

https://review.coreboot.org/cgit/coreboot.git/tree/src/mainboard/google/eve

Mainboard Porting Example: Touchpad

register “i2c[2].voltage” = “I2C_VOLTAGE_1V8” # 1.8V bus

register “i2c[2].speed” = “I2C_SPEED_FAST” # 400 KHz

register “i2c[2].rise_time_ns” = “112” # Measured rise time is 112ns

register “i2c[2].fall_time_ns” = “34” # Measured fall time is 34ns

device pci 15.2 on # PCH I2C bus 2

 chip drivers/i2c/hid # I2C-HID device on this bus

 register “irq” = “ACPI_IRQ_LEVEL_LOW(GPP_B3_IRQ)” # IRQ is routed to GPP_B3

 register “wake” = “GPE0_DW0_15” # Wake from GPE0_DW0 block pin 15

 register "hid_desc_reg_offset" = "1" # HID Descriptor register offset 1

 device i2c 49 on end # I2C slave address 0x49

 end

end

